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Abstract
Under the hypotheses of analyticity in the coupling constant, locality, Lorentz
covariance and Poincaré invariance of the deformations, combined with
the preservation of the number of derivatives on each field, the consistent
interactions between a collection of free massless tensor gauge fields with the
mixed symmetry of a two-column Young diagram of the type (3,1) and one
Abelian vector field, respectively a p-form gauge field, are addressed. The
main result is that a single mixed-symmetry tensor field from the collection
gets coupled to the vector field/p-form. Our final result resembles the well-
known fact from general relativity according to which there is one graviton in
a given world.

PACS number: 11.10.Ef

1. Introduction

Tensor fields in ‘exotic’ representations of the Lorentz group, characterized by a mixed Young
symmetry type [1–7], held the attention lately on some important issues, such as the dual
formulation of field theories of spin two or higher [8–14], the impossibility of consistent
cross-interactions in the dual formulation of linearized gravity [15], a Lagrangian first-order
approach [16, 17] to some classes of massless or partially massive mixed-symmetry type
tensor gauge fields, suggestively resembling to the tetrad formalism of general relativity or
the derivation of some exotic gravitational interactions [18, 19]. An important matter related
to mixed-symmetry type tensor fields is the study of their consistent interactions, among
themselves as well as with higher-spin gauge theories [20–28]. The most efficient approach to
this problem is the cohomological one, based on the deformation of the solution to the master
equation [29]. The purpose of this paper is to investigate the consistent interactions between
a collection of massless tensor gauge fields, each with the mixed symmetry of a two-column
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Young diagram of the type (3, 1) and one vector field, respectively one p-form gauge field. It
is worth mentioning the duality of a free massless tensor gauge field with the mixed symmetry
(3, 1) to the Pauli–Fierz theory in D = 6 dimensions and, in this respect, some developments
concerning the dual formulations of linearized gravity from the perspective of M-theory
[30–32]. Our analysis relies on the deformation of the solution to the master equation by means
of cohomological techniques with the help of the local BRST cohomology, whose component
in a single (3, 1) sector has been reported in detail in [33]. This paper generalizes our results
from [34] regarding the cross-interactions between a single massless (3, 1) field and a vector
field. Under the hypotheses of analyticity in the coupling constant, locality, Lorentz covariance
and Poincaré invariance of the deformations, combined with the preservation of the number
of derivatives on each field, we find a deformation of the solution to the master equation that
provides nontrivial cross-couplings. This case corresponds to a (p+4)-dimensional spacetime
and is described by a deformed solution that stops at order 2 in the coupling constant. The
interacting Lagrangian action contains only mixing-component terms of order 1 and 2 in the
coupling constant, but only one mixed-symmetry tensor field from the collection gets coupled
to the p-form, while the others remain free. At the level of the gauge transformations, only
those of the p-form are modified at order 1 in the coupling constant with a term linear in the
antisymmetrized first-order derivatives of a single gauge parameter from the (3, 1) sector such
that the gauge algebra and the reducibility structure of the coupled model are not modified
during the deformation procedure, being the same as in the case of the starting free action.
Our result is interesting since it exhibits strong similarities to the Einstein gravitons from
general relativity, in the sense that no nontrivial cross-couplings between different fields with
the mixed symmetry (3, 1) are allowed, neither direct nor intermediated by a p-form.

2. Free model for p = 1: BRST symmetry

We begin with the Lagrangian action

S0
[
tAλµν|α, Vµ

] =
∫

dDx

{
1

2

[(
∂ρt

λµν|α
A

)(
∂ρt

A
λµν|α

) − (
∂αt

λµν|α
A

)(
∂βtAλµν|β

)]
− 3

2

[(
∂λt

λµν|α
A

)(
∂ρtAρµν|α

)
+

(
∂ρt

λµ

A

)(
∂ρt

A
λµ

)]
+ 3

(
∂αt

λµν|α
A

)(
∂λt

A
µν

)
+ 3

(
∂ρt

ρµ

A

)(
∂λtAλµ

) − 1

4
FµνF

µν

}
≡ S t

0

[
tAλµν|α

]
+ SV

0 [Vµ], (2.1)

in D � 5 spacetime dimensions, with A = 1, n and n > 1. Each massless tensor field tAλµν|α
has the mixed symmetry (3, 1) and hence transforms according to an irreducible representation
of GL(D, R) corresponding to a four-cell Young diagram with two columns and three rows. It
is thus completely antisymmetric in its first three indices and satisfies the identity tA[λµν|α] ≡ 0.
The collection indices A,B, etc, are raised and lowered with a quadratic form kAB that defines
a positively-defined metric in the internal space. It can always be normalized to δAB by a
simple linear field redefinition, so one can take kAB = δAB and re-write (2.1) as

S0
[
tAλµν|α, Vµ

] =
∫

dDx

[
n∑

A=1

Lt
0

(
tAλµν|α, ∂ρt

A
λµν|α

)
+ LV

0

(
Vµ, ∂νVµ

)]
, (2.2)

where Lt
0

(
tAλµν|α, ∂ρt

A
λµν|α

)
is the Lagrangian density for the field A. The field strength of the

vector field Vµ is defined in the standard manner by

Fµν = ∂µVν − ∂νVµ ≡ ∂[µVν]. (2.3)
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Everywhere in this paper, it is understood that the notation [λ · · · α] signifies a complete
antisymmetry with respect to the (Lorentz) indices between brackets, with the conventions
that the minimum number of terms is always used and the result is never divided by the number
of terms. The trace of tAλµν|α is defined by tAλµ = σ ναtAλµν|α and is obviously an antisymmetric
tensor. Everywhere in this paper, we employ the flat Minkowski metric of ‘mostly plus’
signature σµν = σµν = (−, + + + + · · ·).

A generating set of gauge transformations for action (2.1) can be taken of the form

δε,χ tAλµν|α = −3∂[λε
A
µνα] + 4∂[λε

A
µν]α + ∂[λχ

A
µν]|α, (2.4)

δεVµ = ∂µε, (2.5)

where the gauge parameters εA
λµν determine n completely antisymmetric tensors, the other set of

gauge parameters displays the mixed symmetry (2, 1), such that each of them is antisymmetric
in the first two indices and satisfies the identity χA

[µν|α] ≡ 0, and the gauge parameter ε is a
scalar. The generating set of gauge transformations (2.4) and (2.5) is off-shell, second-order
reducible, the accompanying gauge algebra being obviously Abelian (for details, see [33]).

The construction of the antifield-BRST symmetry for this free theory debuts with the
identification of the algebra on which the BRST differential s acts. The generators of the BRST
algebra are of two kinds: fields/ghosts and antifields. The ghost spectrum for the model under
study comprises the fermionic ghosts

{
ηA

λµν,GA
µν|α, η

}
associated with the gauge parameters{

εA
λµν, χ

A
µν|α, ε

}
from (2.4) and (2.5), the bosonic ghosts for ghosts

{
CA

µν, CA
να

}
due to the first-

stage reducibility relations and also the fermionic ghosts for ghosts CA
ν corresponding to the

second-stage reducibility relations. We ask that ηA
λµν and CA

µν are completely antisymmetric,
GA

µν|α display the mixed symmetry (2, 1) and CA
να are symmetric. The antifield spectrum is

organized into the antifields
{
t
∗λµν|α
A , V ∗µ

}
of the original tensor fields, together with those

of the ghosts,
{
η

∗λµν

A ,G∗µν|α
A , η∗}, {C∗µν

A , C∗να
A

}
and respectively C∗ν

A , of statistics opposite

to that of the associated fields/ghosts. It is understood that t
∗λµν|α
A exhibit the same mixed-

symmetry properties like tAλµν|α and similarly with respect to η
∗λµν

A ,G∗µν|α
A , C

∗µν

A and C∗να
A .

For subsequent purpose, we denote the trace of t
∗λµν|α
A by t

∗λµ

A , being understood that it is
antisymmetric.

Since both the gauge generators and reducibility functions for this model are field-
independent, it follows that the BRST differential s simply reduces to

s = δ + γ, (2.6)

where δ represents the Koszul–Tate differential, graded by the antighost number agh
(agh(δ) = −1) and γ stands for the exterior derivative along the gauge orbits, whose degree
is named the pure ghost number pgh (pgh(γ ) = 1). The overall degree that grades the BRST
complex is known as the ghost number (gh) and is defined as the difference between the pure
ghost number and the antighost number, such that gh(s) = gh(δ) = gh(γ ) = 1. According to
the standard rules of the BRST method, the corresponding degrees of the generators from the
BRST complex are valued as

pgh
(
ηA

λµν

) = pgh
(
GA

µν|α
) = pgh(η) = 1,

pgh
(
CA

µν

) = 2 = pgh
(
CA

να

)
, pgh

(
CA

ν

) = 3,

agh
(
t
∗λµν|α
A

) = 1 = agh(V ∗µ),

agh
(
η

∗λµν

A

) = agh
(
G∗µν|α

A

) = agh(η∗) = 2,

agh
(
C

∗µν

A

) = 3 = agh
(
C∗να

A

)
, agh

(
C∗ν

A

) = 4,
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plus the usual rules that the degrees of the original fields, the antighost number of the ghosts
and the pure ghost number of the antifields all vanish. The actions of δ and γ on the generators
from the BRST complex are given by

γ tAλµν|α = −3∂[λη
A
µνα] + 4∂[λη

A
µν]α + ∂[λGA

µν]|α, γ Vµ = ∂µη, (2.7)

γ ηA
λµν = − 1

2∂[λC
A
µν], γ η = 0, (2.8)

γGA
µν|α = 2∂[µCA

να] − 3∂[µCA
ν]α + ∂[µCA

ν]α, (2.9)

γCA
µν = ∂[µCA

ν], γ CA
να = −3∂(νC

A
α), γCA

ν = 0, (2.10)

γ t
∗λµν|α
A = γV ∗µ = γ η

∗λµν

A = γG∗µν|α
A = γ η∗ = 0, (2.11)

γC
∗µν

A = γ C∗να
A = γC∗ν

A = 0, (2.12)

δtAλµν|α = δVµ = δηA
λµν = δGA

µν|α = δη = 0, (2.13)

δCA
µν = δCA

να = δCA
ν = 0, (2.14)

δt
∗λµν|α
A = T

λµν|α
A , δV ∗µ = −∂νF

νµ, δη
∗λµν

A = −4∂αt
∗λµν|α
A , (2.15)

δG∗µν|α
A = −∂λ

(
3t

∗λµν|α
A − t

∗µνα|λ
A

)
, δη∗ = −∂µV ∗µ, (2.16)

δC
∗µν

A = 3∂λ

(
G∗µν|λ

A − 1
2η

∗λµν

A

)
, δC∗να

A = ∂µG∗µ(ν|α)

A , (2.17)

δC∗ν
A = 6∂µ

(
C∗µν

A − 1
3C

∗µν

A

)
, (2.18)

where T
λµν|α
A are minus the Euler–Lagrange derivatives of action (2.1) with respect to the field

tAλµν|α .
The Lagrangian BRST differential admits a canonical action in a structure named

antibracket and defined by decreeing the fields/ghosts conjugated with the corresponding
antifields, s· = (·, S), where (, ) signifies the antibracket and S denotes the canonical generator
of the BRST symmetry. It is a bosonic functional of the ghost number zero (involving both
field/ghost and antifield spectra) that obeys the master equation (S, S) = 0. The master
equation is equivalent to the second-order nilpotency of s, where its solution S encodes the
entire gauge structure of the associated theory. Taking into account formulae (2.7)–(2.18) as
well as the standard actions of δ and γ in canonical form, we find that the complete solution
to the master equation for the free model under study is given by

S = S0
[
tAλµν|α, Vµ

]
+

∫
dDx

[
t
∗λµν|α
A

(
3∂αηA

λµν + ∂[λη
A
µν]α + ∂[λGA

µν]|α
)

− 1

2
η

∗λµν

A ∂[λC
A
µν] + G∗µν|α

A

(
2∂αCA

µν − ∂[µCA
ν]α + ∂[µCA

ν]α

)
+ C

∗µν

A ∂[µCA
ν] − 3C∗να

A ∂(νC
A
α) + V ∗µ∂µη

]
≡ S t + SV. (2.19)

3. Brief review of the deformation procedure

There are three main types of consistent interactions that can be added to a given gauge theory.
The first type deforms only the Lagrangian action, but not its gauge transformations. The
second kind modifies both the action and its transformations, but not the gauge algebra. The
third, and certainly the most interesting category, changes everything, namely, the action, its
gauge symmetries and the accompanying algebra.
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The reformulation of the problem of consistent deformations of a given action and of
its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution to the
master equation for the initial theory can be deformed into the solution of the master equation
for the interacting theory

S̄ = S + gS1 + g2S2 + O(g3), ε(S̄) = 0, gh(S̄) = 0, (3.1)

such that

(S̄, S̄) = 0. (3.2)

Here and in the following, ε(F ) denotes the Grassmann parity of F. The projection of (3.1)
on the various powers of the coupling constant induces the following tower of equations:

g0 : (S, S) = 0, (3.3)

g1 : (S1, S) = 0, (3.4)

g2 : 1
2 (S1, S1) + (S2, S) = 0, (3.5)

...

The first equation is satisfied by hypothesis. The second governs the first-order deformation
of the solution to the master equation, S1 and shows that S1 is a BRST co-cycle, sS1 = 0.
This means that S1 pertains to the ghost number zero cohomological space of s,H 0(s), which
is generically non-empty because it is isomorphic to the space of physical observables of the
free theory. The remaining equations are responsible for the higher-order deformations of
the solution to the master equation. No obstructions arise in finding solutions to them as
long as no further restrictions, such as spacetime locality or Lorentz covariance, are imposed.
Obviously, only nontrivial first-order deformations should be considered, since trivial ones
(S1 = sB) lead to the trivial deformations of the initial theory and can be eliminated by
convenient redefinitions of the fields. Ignoring the trivial deformations, it follows that S1

is a nontrivial BRST-observable, S1 ∈ H 0(s). Once that the deformation equations (3.4)
and (3.5), etc, have been solved by means of specific cohomological techniques, from the
consistent nontrivial deformed solution to the master equation, one can extract all information
on the gauge structure of the resulting interacting theory.

4. Main results for p = 1

The aim of this paper is to investigate the consistent interactions that can be added to
action (2.1) without modifying either the field spectrum or the number of independent gauge
symmetries. This matter is addressed in the context of the antifield-BRST deformation
procedure described above and relies on computing the solutions to equations (3.4) and (3.5),
etc, from the cohomology of the BRST differential. For obvious reasons, we consider only
analytic, local and manifestly covariant deformations and, meanwhile, restrict to the Poincaré-
invariant quantities, i.e. we do not allow explicit dependence on the spacetime coordinates.
The analyticity of deformations refers to the fact that the deformed solution to the master
equation (3.1) can be expanded in a formal power series in the coupling constant g that makes
sense and reduces to the original solution (2.19) in the free limit (g = 0). Moreover, we ask
that the deformed gauge theory preserves the Cauchy order of the uncoupled model, which
enforces the requirement that the interacting Lagrangian is of maximum order equal to 2 in the

5
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spacetime derivatives of the fields at each order in the coupling constant. Here, we present the
main results without insisting on the cohomology tools required by the technique of consistent
deformations. The cohomological proofs are similar to those from [33, 34] and will not be
detailed in the following. There appear two distinct solutions to (3.2), which cannot coexist.
This is due to the higher-order consistency equations of the deformation procedure. More
precisely, both types of solutions survive at the level of S1, S2 and S3, but the existence of S4

as a solution to the equation 1
2 (S2, S2) + (S1, S3) + (S4, S) = 0 is equivalent to the result that

they are mutually exclusive (for more details, see appendix B in [34]).
The first type of deformed solution to the master equation (3.2), that is consistent to all

orders in the coupling constant, stops at order 1 in the coupling constant and reads

S̄ = S +
g

3 · 4!

∫
d5x ελµνρκFλµFνρVκ, (4.1)

where S is given by (2.19) with D = 5. It is important to stress that this result
is obstructed to higher dimensions, being the only possibility in D � 5 that complies
with all of our working hypotheses. Indeed, the Chern–Simons actions in D > 5,∫

d2k+1x εµ1µ2...µ2k−1µ2kµ2k+1Fµ1µ2 · · · Fµ2k−1µ2k
Vµ2k+1 , with k > 2, are ruled out by the derivative-

order assumption since they contain k > 2 spacetime derivatives. The case described by (4.1)
is not interesting since it provides no cross-couplings between the vector field and the tensor
field with the mixed symmetry (3, 1). It simply restricts the free Lagrangian action (2.1) to
evolve on a five-dimensional spacetime and adds to it a generalized Abelian Chern–Simons
term, without changing the original gauge transformations (2.4) and (2.5) and, in consequence,
neither the original Abelian gauge algebra nor the reducibility structure.

The second type of full deformed solution to the master equation (3.2) ends at order 2 in
the coupling constant and is given by

S̄ = S + g

n∑
A=1

[
yA

∫
d5x ελµνρκ

(
V ∗

λ FA
µνρκ − 2

3
Fλµ∂[ξ t

A
νρκ]|θσ

θξ

)]

+
16g2

3

n∑
A,B=1

[
yAyB

∫
d5x

(
∂[ξ t

A
νρκ]|θσ

θξ
)
∂ [ξ ′

tBνρκ]|θ ′
σθ ′ξ ′

]
, (4.2)

where all FA
µνρκ have the pure ghost number equal to 1 and are defined as the antisymmetrized

first-order derivatives of the ghosts ηA
νρκ from the sector (3, 1)

FA
µνρκ ≡ ∂[µηA

νρκ]. (4.3)

These are in fact the only nontrivial elements with the pure ghost number equal to 1 from the
cohomology of the exterior derivative along the gauge orbits, H(γ ). The quantities yA are n
arbitrary, real numbers and ελµνρκ is the Levi-Civita symbol in D = 5. We observe that this
solution ‘lives’ also in a five-dimensional spacetime, just like the previous one. Of course,
there appears the natural question whether (4.2) can be generalized to higher dimensions. The
answer is again negative (like with respect to (4.1), but for quite different reasons. Without
entering too many details, we will expose here only the main argument for the existence of
these obstructions. If one analyzes separately the first-order deformation of the solution to the
master equation in the cross-interacting sector1, then it can be shown (see appendix A of [34],
section 2) that S1 ends nontrivially at the antighost number 1

S1 =
∫

dDx(a0 + a1), agh(ai) = i, i = 0, 1, (4.4)

1 Meaning that we search only solutions S1 to equation (3.4) that effectively couple BRST generators from the vector
sector with those belonging to the mixed-symmetry sector.

6
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with ai solutions to the equations

γ a1 = 0, δa1 + γ a0 = ∂µj
µ

0 , agh
(
j

µ

0

) = 0. (4.5)

Looking at (2.8), it is easy to see that the general form of the (nontrivial) solution to the former
equation from (4.5) reads

a1 =
n∑

A=1

(
t∗Aλµν|αMA

λµναη + V ∗
λ NAλµνρκFA

µνρκ

)
, (4.6)

where MA
λµνα and NAλµνρκ are γ -closed quantities built out of the original fields (which is

the same with gauge-invariant elements since γ acts on the original fields through the gauge
transformations modulo replacing the gauge parameters with the ghosts) in order to ensure
γ a1 = 0. Since the most general gauge-invariant quantities of the free model are the Abelian
field strength Fµν , the ‘curvature’ tensors KA

λµνρ|αβ ≡ ∂α∂[λt
A
µνρ]|β − ∂β∂[λt

A
µνρ]|α and their

derivatives, it follows that the tensors MA and NA appearing in (4.6) are polynomials in F,KA,
and their subsequent derivatives (up to a finite order in order to render local deformations).
Imposing the derivative-order assumption, it follows immediately that the functions of type
MA are restricted to be at most linear in F, while all NA must be constant (since otherwise one
infers interaction vertices with more than two spacetime derivatives). Requiring the Lorentz
covariance and Poincaré invariance, it follows that the only possible candidates are

MA
λµνα = wAFλµσνα, NAλµνρκ = yAδD

5 ελµνρκ , (4.7)

with wA and yA some arbitrary, real constants and δD
5 the Kronecker symbol. Inserting (4.7)

into (4.6) and acting with δ on the resulting expression, it can be shown (see appendix A of
[34], section 2) that the latter equation in (4.5) does not possess solutions with respect to a0

unless

wA = 0, A = 1, n. (4.8)

Inserting (4.8) into (4.7) and the corresponding functions into (4.6), we find that the last
component of S1 takes the general form

a1 = δD
5 ελµνρκV ∗

λ

[
n∑

A=1

(
yAFA

µνρκ

)]
, (4.9)

which is nothing but the first term from the sum in the right-hand side of (4.2) for D = 5.
Starting with this only possibility for a1, it is merely a matter of computation to show
that the corresponding deformed solution to the master equation, which is consistent to
all orders in the coupling constant, is precisely (4.2). We can thus state that the source
of obstructions to generalizations of (4.2) in higher dimensions (D > 5) is complex, being
given by a combination of all hypotheses: locality, Lorentz covariance, Poincaré invariance
and derivative-order assumption.

From (4.2) we read all the information on the gauge structure of the coupled theory.
The terms of the antighost number zero in (4.2) provide the Lagrangian action. They can be
equivalently organized as

S̄0
[
tAλµν|α, Vµ

] = S t
0

[
tAλµν|α

] − 1

4

∫
d5xF̄µνF̄

µν, (4.10)

in terms of the deformed field strength

F̄ µν = Fµν +
4g

3
εµναβγ

n∑
A=1

(
yA∂[ρt

A
αβγ ]|

ρ
)
, (4.11)

7
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where S t
0

[
tAλµν|α

]
is the Lagrangian action of the massless tensor fields tAλµν|α appearing in (2.1)

with D = 5. We observe that action (4.10) contains only mixing-component terms of order 1
and 2 in the coupling constant. The piece of antighost number 1 appearing in (4.2) gives the
deformed gauge transformations in the form

δ̄ε,χ tAλµν|α = −3∂[λε
A
µνα] + 4∂[λε

A
µν]α + ∂[λχ

A
µν]|α, (4.12)

δ̄ε,χV µ = ∂µε + 4gεµαβγ δ

n∑
A=1

(
yA∂αεA

βγ δ

)
. (4.13)

It is interesting to note that only the gauge transformations of the vector field are modified
during the deformation process. This is enforced at order 1 in the coupling constant by
a term linear in the antisymmetrized first-order derivatives of some gauge parameters from
the (3, 1) sector. At antighost numbers strictly greater than 1, (4.2) coincides with solution
(2.19) corresponding to the free theory. Consequently, the gauge algebra and the reducibility
structure of the coupled model are not modified during the deformation procedure, being the
same as in the case of the starting free action (2.1) subject to the gauge transformations given
in (2.4) and (2.5). It is easy to see from (4.10), (4.12) and (4.13) that if we impose the
PT-invariance at the level of the coupled model, then we obtain no interactions (we must set
g = 0 in these formulae).

Action (4.10) seems to couple the vector field to each field tAλµν|α (assuming that all yA are
nonvanishing) and also to provide cross-couplings between different fields tAλµν|α (see the last
term from the right-hand side of (4.2) with A �= B). We will show that it is in fact possible to
redefine both the fields tAλµν|α and the constants yA such that: (1) the vector field gets coupled to
a single mixed-symmetry tensor field from the collection and (2) the cross-couplings between
different fields tAλµν|α are discarded. In order to show this result, let us denote by Y the matrix
of elements yAyB . It is simple to see that the rank of Y is equal to 1. By an orthogonal
transformation M, we can always find a matrix Ŷ of the form

Ŷ = MT YM, (4.14)

with MT the transpose of M, such that Ŷ is diagonalized and a single diagonal element (for
definiteness, we take the first) is nonvanishing

Ŷ 11 =
n∑

A=1

(yA)2 ≡ y2, Ŷ 1A′ = Ŷ B ′1 = Ŷ A′B ′ = 0, A′, B ′ = 2, n. (4.15)

If we make the notation

ŷA = MACyC, (4.16)

then relation (4.15) implies

ŷA = yδA
1 . (4.17)

Now, we make the linear field redefinition

tAλµν|α = MACt̂Cλµν|α, (4.18)

with MAC the elements of M. It is easy to see that this transformation leaves S t
0

[
tAλµν|α

]
invariant

(it remains equal to the sum of free actions, one for every transformed field t̂Aλµν|α from the
collection) and, moreover, the deformed action (4.10) becomes

S̄0
[
tAλµν|α, Vµ

] = S t
0

[
t̂Aλµν|α

] − 1

4

∫
d5xF̄ ′

µνF̄
′µν, (4.19)

8
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where

F̄ ′µν = Fµν +
4g

3
yεµναβγ ∂[ρ t̂

1
αβγ ]|

ρ. (4.20)

Action (4.19) is invariant under the gauge transformations

δε̂,χ̂ t̂Aλµν|α = −3∂[λε̂
A
µνα] + 4∂[λε̂

A
µν]α + ∂[λχ̂

A
µν]|α, (4.21)

δε̂,χ̂V µ = ∂µε + 4gyεµαβγ δ∂αε̂1
βγ δ, (4.22)

where the new gauge parameters are

ε̂A
µνα = εB

µναMBA, χ̂A
µν|α = χB

µν|αMBA. (4.23)

It is now clear that (4.19) decomposes into the action inferred in [34] that couples only the first
tensor field with the mixed symmetry (3, 1) from the collection (A = 1) to the vector field and
the sum of free actions for the remaining (n−1) tensor fields with the mixed symmetry (3, 1).
In conclusion, one cannot couple different fields with the mixed symmetry (3, 1) through a
vector field. A single field of this kind may be coupled nontrivially in D = 5, while the others
remain free.

It is important to stress that the problem of obtaining consistent interactions depends
strongly on the spacetime dimension. For instance, if one starts with action (2.1) in D > 5,
then one inexorably gets S̄ = S, so no term can be added to either the original Lagrangian or
its gauge transformations.

5. Generalization to an arbitrary p

Although the main results discussed so far do not admit generalizations to D > 5 for a vector
field, there exists a possible generalization if one extends the form degree from one to an
arbitrary p. In this situation, the starting point is given by a free model describing a collection
of n massless tensor fields tAλµν|α and an Abelian p-form

S0
[
tAλµν|α, Vµ1...µp

] = S t
0

[
tAλµν|α

]
+ SV

0 [Vµ1...µp
], (5.1)

where

SV
0 [Vµ1...µp

] = − 1

2 · (p + 1)!

∫
dDxFµ1...µp+1F

µ1...µp+1 (5.2)

and S t
0

[
tAλµν|α

]
follows from formula (2.1). The spacetime dimension is subject to the inequality

D � max(5, p + 1), (5.3)

which ensures that the number of physical degrees of freedom of this free model is non-
negative. The Abelian p-form field strength is defined in the usual manner as

Fµ1...µp+1 = ∂[µ1Vµ2...µp+1]. (5.4)

Action (5.1) is invariant under a generating set of gauge transformations given by (2.4) for the
fields tAλµν|α and by

δ(1)
ρ
Vµ1...µp

= ∂[µ1

(1)
ρ µ2...µp] (5.5)

for the Abelian p-form, where the gauge parameters
(1)
ρ µ1...µp−1 are completely antisymmetric.

The gauge symmetries of S t
0

[
tAλµν|α

]
are reducible of order 2, while the gauge transformations

9
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(5.5) are reducible of order (p − 1), such that the overall reducibility order will be equal to
max(2, p − 1).

The BRST algebra contains two types of generators: some from the collection sector,
described previously, and the others from the p-form sector. The latter generators comprise the

field Vµ1...µp
and its antifield V ∗

µ1...µp
, the ghosts

((k)

ξ µ1...µp−k

)
k=1,p

corresponding to the gauge

parameters (k = 1) and to the reducibility functions (k = 2, p), together with their antifields((k)

ξ

∗
µ1...µp−k

)
k=1,p

(all these generators define, where appropriate, antisymmetric tensors). The
solution to the master equation for this free model takes the simple form

S = S t + SV, (5.6)

where S t follows from (2.19) and SV is expressed by

SV = SV
0 [Vµ1...µp

] +
∫

dDx

(
V ∗µ1...µp∂[µ1

(1)

ξ µ2...µp] +
p−1∑
k=1

(k)

ξ

∗µ1...µp−k

∂[µ1

(k+1)

ξ µ2...µp−k]

)
.

(5.7)

Although the cohomological structure in the case of a p-form with p > 1 is clearly richer
than in the presence of a vector field, nevertheless the cohomology of the tensor fields with
the mixed symmetry (3, 1) is dominant. Just like in the previous situation of a vector field,
there appear two types of fully deformed solutions to the master equation, which again cannot
coexist. We cannot stress enough that these results take place for the same working hypotheses
as in the case of a one-form. The first type generalizes (4.1) and is expressed by

S̄ = S + gc1δ
D
2p+1

∫
dDxελ1...λpµ1...µp+1Vλ1...λp

Fµ1...µp+1

+ gc2δ
D
3p+2

∫
dDxελ1...λpµ1...µp+1ν1...νp+1Vλ1...λp

Fµ1...µp+1Fν1...νp+1 , (5.8)

where S reads as in (5.6), c1,2 are two arbitrary, real constants and δD
2p+1 denotes the Kronecker

symbol. This situation describes no interactions among the tensor fields tAλµν|α or between
tAλµν|α and the p -form: it simply adds to the original Lagrangian density two Chern–Simons
terms (only for p odd, since otherwise they are trivial), without modifying the original
gauge symmetries. The only difference from the vector field case is that here two kinds
of Chern–Simons terms with at most two spacetime derivatives are admitted (again, for an
odd p), while there only one was allowed. This is purely a matter of spacetime dimension
since here 2p + 1 > max(5, p + 1) for any odd p > 1, while for p = 1 we have that
2p + 1 = 3 < max(5, p + 1) = 5. The second case is pictured by

S̄ = S + g

n∑
A=1

[
yA

∫
dp+4x

(
ελ1...λpµνρκV ∗

λ1...λp
FA

µνρκ

+ (−)p
4

3 · (p + 1)!
ελ1...λp+1νρκFλ1...λp+1∂[ξ tAνρκ]|θσ

θξ

)]

+
16g2

3

n∑
A,B=1

[
yAyB

∫
dp+4x

(
∂[ξ t

A
νρκ]|θσ

θξ
)
∂[ξ ′

tB νρκ]|θ ′
σθ ′ξ ′

]
(5.9)

and generalizes result (4.2). (It is clear that in the limit p = 1 formula (5.9) is nothing but
(4.2).) It describes a theory in D = p + 4 spacetime dimensions that is valid for any value
(even or odd) p > 1, which couples the tensor fields tAµνλ|ρ to the p-form. Regarding the
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Lagrangian structure of this coupled model, we mention that the terms of antighost number
zero present in (5.9) produce the Lagrangian action

S̄0
[
tAλµν|α, Vλ1...λp

] = S t
0

[
tAλµν|α

] − 1

2 · (p + 1)!

∫
dp+4xF̄µ1...µp+1 F̄

µ1...µp+1, (5.10)

in terms of the deformed field strength

F̄ µ1...µp+1 = Fµ1...µp+1 + (−)p+1 4g

3
εµ1...µp+1αβγ

n∑
A=1

(
yA∂[ρt

A
αβγ ]|

ρ
)
, (5.11)

where S t
0

[
tAλµν|α

]
is the free action for the collection of (3, 1) mixed-symmetry type tensor

fields evolving on a spacetime of dimension D = p + 4. The pieces of antighost number 1
from (5.9) emphasize the deformed gauge transformations (4.12) in D = p + 4 and

δ̄ε,χV λ1...λp = ∂µε + 4gελ1...λpµνρκ

n∑
A=1

(
yA∂αεA

βγ δ

)
, (5.12)

such that only the gauge symmetries of the p-form are modified. If in (5.10) and its gauge
symmetries we perform the transformations (4.17), (4.18) and (4.23), then the cross-couplings
among different tensor fields tAλµν|α intermediated by a p-form get decoupled and we are led to
the same conclusions as in the case of a vector field: the p-form interacts with a single tensor
field

(
t̂1
λµν|α

)
, while the remaining (n − 1) tensor fields with the mixed symmetry (3, 1) are left

free.

6. Conclusions

The main conclusion of this paper is the proof of rigidity of the couplings of a collection of
tensor fields with the mixed symmetry (3, 1) to a vector field and actually to an arbitrary p-form
gauge field. This means that under some natural assumptions (analyticity of the deformations
in the coupling constant, locality, Lorentz covariance, Poincaré invariance and preservation
of the number of derivatives on each field), a single mixed-symmetry tensor field from the
collection gets coupled to the vector field (or to a p-form). Our final result resembles the
well-known fact from general relativity according to which there is one graviton in a given
world. This is not a surprise since the action of a free tensor field with the mixed symmetry
(3, 1) is dual to the linearized gravity (in D = 6).
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